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ABSTRACT

For the Automatic Target Recognition (ATR) algorithm, the quality of the input image sequence can be a major
determining factor as to the ATR algorithm‘s ability to recognize an object. Based on quality, an image can be
easy to recognize, barely recognizable or even mangled beyond recognition. If a determination of the image quality
can be made prior to entering the ATR algorithm, then a confidence factor can be applied to the probability of
recognition. This confidence factor can be used to rate sensors; to improve quality through selectively preprocessing
image sequences prior to applying ATR; or to limit the problem space by determining which image sequences need
not be processed by the ATR algorithm. It could even determine when human intervention is needed. To get a flavor
for the scope of the image quality problem, this paper reviews analog and digital forms of image degradation. It looks
at traditional quality metric approaches such as peak signal-to-noise ratio (PSNR). It examines a newer metric based
on human vision data, a metric introduced by the Institute for Telecommunication Sciences (ITS). These objective
quality metrics can be used as confidence factors primarily in ATR systems that use image sequences degraded
due to transmission systems. However, to determine the quality metric, a transmission system needs the original
input image sequence and the degraded output image sequence. This paper suggests a more general approach to
determining quality using analysis of spatial and temporal vectors where the original input sequence is not explicitly
given. This novel approach would be useful where there is no transmission system but where the ATR system is
part of the sensor, on-board a mobile platform. The results of this work are demonstrated on a few standard image
sequences.
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1. INTRODUCTION

For a system that generates electro-optical image sequences, one model of recognition has been defined as a multi-step
process involving detection, segmentation, feature extraction, indexing, and matching.! Image quality can also be
added as an early step toward recognition. After all, based on quality, an image can be easy to recognize, barely
recognizable or even mangled beyond recognition. A simple statistical system-level analysis of this multi-step model
is shown in figure 1, where the probability of recognition depends on the probability of success at each step. This is
stated mathematically as

P(Recognition) = P(Match|Index, Feature, Segment, Detect, Quality).

This thought process suggests that if detection fails, (i.e. P(detection) = 0) then so does every other step in the
multi-step recognition process. However, if detection succeeds, there is still the chance that every other step will fail
if segmentation fails (i.e. P(segmentation) = 0). Likewise, if any step fails so will the recognition. However, this
statistical thought process also leaves room for degrees of success at each step (i.e. P(step) > 0) which suggests that
the probability of recognition can be built based on confidence in the individual steps.
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If the input image sequence quality is poor then so may be the detection and/or segmentation and/or feature
extraction and so on. Suggesting that quality is a key initial step in the recognition, multi-step process. Thus, quality
is added in figure 1 as the first step toward recognition.

A logical goal would be to keep image quality high enough so it does not interfere with the other steps in the
recognition process. After all, with articulation of targets and the dynamics of the real world environment, the other
recognition steps have enough to worry about. For the most part, the quality aspects of the recognition system
have been left to subsystem designers who define quality factors for subsystems such as the optical or transmission
subsystem. However, a subsystem quality factor is not sufficient to define the overall impact of quality on the
probability of recognition. The actual quality varies based on a variety of factors which may include sporadic
system failures, atmospherics, environmental, other analog artifacts, and digital artifacts. This paper suggests that
system quality can be transformed into a factor that determines confidence in the capability of the recognition
process. Further, unlike other quality metrics, this paper introduces a technique that needs no knowledge of the
input imagery to determine the quality of the output image frame.

2. SCOPE OF IMAGE QUALITY PROBLEM

The cause for the perceived poor quality of imagery can be a combination of problems starting from the object being
imaged and ending with the eyesight and mind of the person observing. For our purposes, we will assume a typical
object (one that is not an ambiguous illusion) and a normal observer. In that case, the cause for poor perceived
quality can be anything that occupies the space between the observer and the object. Starting from the object,
quality is impacted by the atmosphere and obstructions between the object and the sensor, followed by the optical
system of the sensor, the sensor electronics, digitization, compression, software, the transmission system along with
atmospherics, the receiving system, the display system and the space between the display and observer (Figure 2).
To get a flavor for the scope of the image quality problem, this paper briefly reviews analog and digital forms of
image degradation.

2.1. Analog Forms of Image Degradation

Many reasons exist for poor quality within the various subsystems involved in imaging. In the atmosphere, phenomena
such as smoke, fog, rain, lightening, sun or even other objects can cause poor quality. In the optical subsystem of
either an infrared or a standard TV camera, quality can be impacted by focus, field of view, magnification, optical
efficiency, geometrical distortion, optical aberrations and diffraction effects.? For the person viewing a CRT screen,
the quality of the imagery can be poor due to misaligned controls for contrast, color, horizontal hold and so forth.
Analog TV viewers may see noise with periodic components such as herringbone, moirés, and flutter> The quality
can be poor due to the analog transmission with problems such as a weak signal fading in and out, ghosting, static,
or interference. Ghosting is caused by multipath and out-of-phase reception. Fading can be the result of a poor
receiver or atmospherics. Static might result because the transmitter is too far away. Interference might be caused
by a nearby strong transmitter interfering near the frequency of the TV channel.
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Figure 1. A system analysis shows that the probability of recognition depends on the probability of success in each
step of the recognition model.



2.2. Digital Forms of Image Degradation

Some of the poor quality problems of the analog systems are being improved with digital systems. Digital TV images
do not exhibit all the same problems due to rejection of amplitude modulation.? Also, ghosting and fading in and out
is not a typical problem with a digital transmission system. Displays and cameras have been improved with digital
circuitry. However, quality degradation for digital systems occur due to the CCD resolution in the digital camera, the
display pixel resolution, quantization noise, interference resulting in bit loss and digital transmission coding schemes.
The digital transmission systems impact image quality with artifacts such as blocking/tiling, jerkiness, edge busyness
and image persistence.* This suggests that ever-changing technology offers ever-changing ways not only to improve
image quality, but also to degrade image quality.

3. OBJECTIVE QUALITY METRICS FOR TRANSMISSION SYSTEMS

Determining an appropriate objective quality metric is an ongoing research problem. Much research has focused on
the transmission systems where bench-top tests can use knowledge of the high quality input imagery to the system
and knowledge of the degraded output imagery to produce an objective metric. For Automatic Target Recognition
(ATR) systems that use transmission systems, existing objective quality metrics can be used as confidence factors.
Metrics that use knowledge of the input and output include metrics based on the mean square error (MSE), metrics
based on correlation with subjective assessments, and metrics based on human visual system (HVS) models. This
section reviews two common metrics, a common MSE approach known as PSNR and the § metric based on correlation
with subjective assessment.

3.1. PSNR Metric

A traditional approach for determining an objective quality metric for imagery is the Peak Signal-to-Noise ratio
(PSNR). To calculate PSNR, for an image g(z,y) that is somewhat degraded compared to an original image f(z,y),
a comparison of the two images can be made by looking at the error,’ e(z,y) such that

e(z,y) = g(z,y) — f(z,y)

and the mean square error M SE over the whole image of size M by N is given by

Za]v\/lzl Z]yvzl 62 (iU, y)

MSE = UN

and, consequently, the PSNR is calculated as

k value of
PSNR = 20log,,, oAk value of g(,y)]

MSE

Figure 2. Poor perceived quality can be the result of something that occurs between the observer and the object



where the peak value of g(z,y) is 255 for an 8 bit image.

PSNR has been shown not to be an accurate reflection of the quality perceived by the human visual system
(HVS).5 An example of why PSNR is not an accurate reflection of the HVS is shown in the infrared image of
figure 3. One image is degraded with additive zero mean normally distributed noise. The other image is also
degraded with the same additive noise after each column of the noise matrix has been ranked in descending order.
The result is degraded images with the same PSNR of 11.4 DB. But the HVS suggests different values of quality. In
one image the degradation error is spread smoothly throughout the image while in the other image, the degradation
error is more random giving a peppered look and the perception of a lower quality image.

Figure 3. Both images are degraded with additive noise. The human visual system assigns different values of
quality to the images although both have the same PSNR of 11.4 DB.

3.2. ITS Metric

Another objective quality metric denoted as 8 was introduced by the Institute for Telecommunication Sciences (ITS).”
The metric is defined as
§=4.77—-0.922m1 — 0.272my — 0.356ms.

To define the variables m1, msy,and mg, some symbols need to be defined. The original sequence is defined as O,,
and the lower quality sequence is defined as D,,. SI[O,] is the spatial information content based on the standard
deviation of the edge information in the image, O,. TI[O,] is the temporal information content based on the
standard deviation calculated over the frame difference between successive images. Defining other symbols, ST D is
standard deviation, ST D¢;me. is standard deviation over time, M AX is maximum, M AX;me is maximum over time,
RM Stime is root mean square over time, and CONYV is the convolution function. Now, the variables in § are defined
as
[O,] — SI[D,) )

STOy] ’

SI
mi = RMStime (581|



M = frime(0.108M AX {(TI[O,] — TI[Dy]),0}), and

= M AX}ime{4.23LOG o( I[[ O”]]) 0},

where
ftime = STDtime{CONV(xia [_17 2, _1])}

Unlike PSNR, § was designed to correlate well with subjective data sets that demonstrate all the digital artifacts
introduced by lossy compression. However, as shown, both PSNR and § require knowledge of the original images
to determine image quality. The next section introduces a novel approach that does not require knowledge of the
original images but like the § metric takes advantage of the spatial and temporal information content of the images
to determine variations in quality.

4. OBJECTIVE QUALITY BASED SOLELY ON OUTPUT IMAGERY

The objective metrics introduced for transmission subsystems do not consider the other parts of the ATR system.
Since the world is so dynamic, it is impossible to acquire complete end-to-end knowledge about all the analog and
digital artifacts that could cause degradation to the imagery. As discussed earlier, beside the transmission system,
quality is impacted by the atmosphere and obstructions between the object and the sensor, followed by the optical
system of the sensor, the sensor electronics, digitization, compression, software, the receiving system, and the display
system. For an image sequence, results suggest that a more general approach to quality determination is analysis of
spatial and temporal vectors where the original input sequence is not explicitly given.

4.1. Approach for Obtaining Spatio-Temporal Information Content

Image sequences have varying amounts of spatio-temporal content® which impact the quality assessment. The spatio-
temporal content of an image sequence can be plotted on a two dimensional graph of spatial content versus temporal
content where values are obtained using techniques documented in an ANSI standard.” To obtain the spatial content,
the first step is to apply the Sobel operation to each image frame (Figure 4) by centering the 3x3 Sobel mask over
each pixel Y (4, j, t,), then by multiplying the mask coefficients by the neighboring pixels and finally by summing the
resulting nine values together. The Sobel operation is expressed mathematically for the horizontal mask as

= I ) -1 [0 1
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Figure 4. The 3x3 horizontal (left) and vertical (right) Sobel masks.

SIn(i,j,tn) =Y (@ +1,j—1,¢t
+Y(@+1,57+1
and for the vertical mask as
SI (Z .]7 ) Y(l—l,]—{—l,tn)—Y(Z—l,]—l,tn)+2Y(Z,]+1,tn)—QY(l,]—l,tn)
+Y(i+1,74+1,t,) - Y(@+1,5—1,t,)
with the magnitude of the spatial information defined as

,tn) Y(i— 1,] ,tn)

(irdtn) = \/STZ (0,4 ta) + SI2(, i ).



Next, for P total pixels in an image, the standard deviation of each Sobel filtered image is calculated as

1 0/
SIstdev(tn) = FXZ:XJ:SIE(Z:J;tn) _SI%zean(tn)7
where

SImean(tn) = % Z Z SIT(iaja tn)'
[

This results in a time series of standard deviations which can be plotted on the spatial axis of the spatio-temporal
plot. To obtain the temporal information, a frame difference is computed for frame Y at time ¢,, defined as

TI(i,j,ty) = AY (tn) = Y (tn) = V(tn_1).

The temporal information feature, T Ist4ey[tn], is then obtained using the standard deviation of each AY'(¢,,)
calculated as

1 ..
TIstdev[tn] = F Z ZTI2(7/7.]7tn) - TI?nean(tn)a
(2]
where

1 .
Thnean(tn) = 5 SO TIG, i tn).
i g

The temporal information feature is plotted on the temporal axis of the spatio-temporal plot. The values for this
feature increase with increased motion, panning, zooming and scene cuts. Figure 5 shows a spatio-temporal plot
based on the first few frames of the Miss America and Table Tennis standard image sequences. The Miss America
sequence has lower spatial and temporal values than the table tennis sequence. Evidence of why these values differ
is shown in Figure 6 which shows more spatial and temporal activity for the table tennis sequence. The table tennis
sequence has more spatial content due to textures in the scene, and it has more temporal content due to the ping
pong motion and slow pan.

4.2. Spatio-Temporal Information Analysis

Figure 7 shows the spatio-temporal plot for an output sequence of 100 infrared image frames. The sequence was
acquired from an infrared system mounted on an airborne platform. Evident in the result is that some frames jump
out of the normal spatio-temporal area. A reformulation of the spatio-temporal information into a 1-D metric,® yields
figure 8 which relates which frames have widely varying spatial-temporal content. The quality appears lower for those
image frames that jump out of the normal spatio-temporal information content. This contention is supported by an
analysis of the affect of various quality degradations on the spatio-temporal content.’

Further, based on a particular imaging scenario, an expected spatio-temporal information content can be pre-
dicted. In this case, not only can this technique identify individual low quality frames but it also can detect sequences
of low quality frames based on a distance measure from the expected value.

Through reformulation, this metric can be the basis for a confidence factor.

Figure 9 shows a few of the infrared images which the spatio-temporal analysis suggests are lower quality. For
comparison purposes, the frames before and after the degraded frames are shown. The spatio-temporal analysis
obviously chose degraded images using only the output image sequence.
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Figure 5. The Spatio-Temporal trajectories for the first ten frames of the Miss America and Table Tennis standard
sequences.

Figure 6. The left two frames show original images. The middle frames show spatial content through Sobel images.
The rightmost frames show temporal content via frame differencing.
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Figure 7. A spatio-temporal plot of a 100 frame infrared sequence
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Figure 8. A reformulation of the spatio-temporal plot yields a relative quality metric per frame



5. CONCLUSION

There are numerous causes for poor image quality. Traditional approaches for measuring quality such as PSNR
require knowledge of an input and output image to determine subsystem quality. In reality, since partial occlusions,
atmospherics, optics and circuitry must be used to acquire an input image, there is no ideal high quality input
image available. A new approach to determining quality of images in an output image sequence is introduced using
no knowledge of the input image sequence. The approach is to obtain a quality metric based on an analysis of
the spatio-temporal content variation in the output images. The approach was successfully demonstrated on a few
infrared image sequences. The approach suggests an application to ATR where the quality metrics can be applied as a
confidence factor to the ATR algorithm. The confidence factor can be obtained based on the relative quality obtained
from dynamic spatio-temporal analysis. This approach would be especially useful where there is no transmission
system but where the ATR system is part of the sensor, on-board a mobile platform.

The confidence factor allows a running observation of quality’s impact on the recognition process. By measuring
quality on the sequence, the actual probability of recognition can be raised by ignoring the lowest quality image
frames or by selectively preprocessing image frames prior to applying ATR algorithms. The confidence factor can
even suggest when it is necessary for humans to intervene in the recognition process.
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Figure 9. The middle frames were selected as lower quality via spatio-temporal analysis




